analysis_v1¶
Creates a named analysis, i.e. a triplet of theory, data and covariance matrix. The covariance matrix may be diagonal and contain only statistical uncertainties or contain a systematic part as well.
Options
-n, --name
– defines the name of the analysis (required)
-d, --datasets
– defines the list of datasets to use for the analysis (required)
-p, --cov-parameters
– defines the parameters for the covariance matrix
--cov-strict
– raises an exception if a parameter is skipped because it does not affect the output
-o, --observable
– defines the observable (model) to be fitted
--toymc
– use random sampling to variate the data/theory
choices: covariance, poisson, normal, normalStats, asimov
--toymc-source
– defines the source for ‘–toymc’ option
choices: data or theory
default: theory
--covariance-updater
– defines name of the hook that triggers a covariance matrix update
-v, --verbose
– define verbosity level
Examples
Initialize an analysis ‘analysis’ with a dataset ‘peak’:
./gna \ -- gaussianpeak --name peak_MC --nbins 50 \ -- gaussianpeak --name peak_f --nbins 50 \ -- ns --name peak_MC --print \ --set E0 values=2 fixed \ --set Width values=0.5 fixed \ --set Mu values=2000 fixed \ --set BackgroundRate values=1000 fixed \ -- ns --name peak_f --print \ --set E0 values=2.5 relsigma=0.2 \ --set Width values=0.3 relsigma=0.2 \ --set Mu values=1500 relsigma=0.25 \ --set BackgroundRate values=1100 relsigma=0.25 \ -- dataset-v1 --name peak --theory-data peak_f.spectrum peak_MC.spectrum -v \ -- analysis-v1 --name analysis --datasets peak -vInitialize an analysis ‘analysis’ with a dataset ‘peak’ and covariance matrix based on constrained parameters:
./gna \ -- gaussianpeak --name peak_MC --nbins 50 \ -- gaussianpeak --name peak_f --nbins 50 \ -- ns --name peak_MC --print \ --set E0 values=2 fixed \ --set Width values=0.5 fixed \ --set Mu values=2000 fixed \ --set BackgroundRate values=1000 fixed \ -- ns --name peak_f --print \ --set E0 values=2.5 relsigma=0.2 \ --set Width values=0.3 relsigma=0.2 \ --set Mu values=1500 relsigma=0.25 \ --set BackgroundRate values=1100 relsigma=0.25 \ -- dataset-v1 peak --theory-data peak_f.spectrum peak_MC.spectrum -v \ -- pargroup covpars peak_f -m constrained \ -- analysis-v1 analysis --datasets peak -p covpars -v