analysis_v1

Creates a named analysis, i.e. a triplet of theory, data and covariance matrix. The covariance matrix may be diagonal and contain only statistical uncertainties or contain a systematic part as well.

Options

  • -n, --name – defines the name of the analysis (required)

  • -d, --datasets – defines the list of datasets to use for the analysis (required)

  • -p, --cov-parameters – defines the parameters for the covariance matrix

  • --cov-strict – raises an exception if a parameter is skipped because it does not affect the output

  • -o, --observable – defines the observable (model) to be fitted

  • --toymc – use random sampling to variate the data/theory

    • choices: covariance, poisson, normal, normalStats, asimov

  • --toymc-source – defines the source for ‘–toymc’ option

    • choices: data or theory

    • default: theory

  • --covariance-updater – defines name of the hook that triggers a covariance matrix update

  • -v, --verbose – define verbosity level

Examples

  • Initialize an analysis ‘analysis’ with a dataset ‘peak’:

    ./gna \
        -- gaussianpeak --name peak_MC --nbins 50 \
        -- gaussianpeak --name peak_f  --nbins 50 \
        -- ns --name peak_MC --print \
            --set E0             values=2    fixed \
            --set Width          values=0.5  fixed \
            --set Mu             values=2000 fixed \
            --set BackgroundRate values=1000 fixed \
        -- ns --name peak_f --print \
            --set E0             values=2.5  relsigma=0.2 \
            --set Width          values=0.3  relsigma=0.2 \
            --set Mu             values=1500 relsigma=0.25 \
            --set BackgroundRate values=1100 relsigma=0.25 \
        -- dataset-v1  --name peak --theory-data peak_f.spectrum peak_MC.spectrum -v \
        -- analysis-v1 --name analysis --datasets peak -v
    
  • Initialize an analysis ‘analysis’ with a dataset ‘peak’ and covariance matrix based on constrained parameters:

    ./gna \
        -- gaussianpeak --name peak_MC --nbins 50 \
        -- gaussianpeak --name peak_f  --nbins 50 \
        -- ns --name peak_MC --print \
            --set E0             values=2    fixed \
            --set Width          values=0.5  fixed \
            --set Mu             values=2000 fixed \
            --set BackgroundRate values=1000 fixed \
        -- ns --name peak_f --print \
            --set E0             values=2.5  relsigma=0.2 \
            --set Width          values=0.3  relsigma=0.2 \
            --set Mu             values=1500 relsigma=0.25 \
            --set BackgroundRate values=1100 relsigma=0.25 \
        -- dataset-v1 peak --theory-data peak_f.spectrum peak_MC.spectrum -v \
        -- pargroup covpars peak_f -m constrained \
        -- analysis-v1  analysis --datasets peak -p covpars -v