minimizer_v1¶
The module creates a minimizer instance which then may be used for a fit with fit_v1 module or elsewhere.
The minimizer is stored in env.future[‘minimizer’] under its name.
Positional arguments
name– define name of the minimizer
statistic– define the statistics function that has to be minimized (created by stats module)
pargroups– define parameter groups for the minimization (created by pargroups module)
Options
-t, --type– define type of minimizer
choices: minuit, minuit2, iminuit
default: minuit2
--minopts– options that are passed to the minimizer
-s, --strict– raise an exception if a parameter is skipped because it does not affect the output
--initial-value– define what initial value to use
choices: central or value
default: central
-v, --verbose– define verbosity level
Examples
Create a minimizer and do a fit of a function ‘stats’ and a group of parameters ‘minpars’:
./gna \ -- gaussianpeak --name peak_MC --nbins 50 \ -- gaussianpeak --name peak_f --nbins 50 \ -- ns --name peak_MC --print \ --set E0 values=2 fixed \ --set Width values=0.5 fixed \ --set Mu values=2000 fixed \ --set BackgroundRate values=1000 fixed \ -- ns --name peak_f --print \ --set E0 values=2.5 relsigma=0.2 \ --set Width values=0.3 relsigma=0.2 \ --set Mu values=1500 relsigma=0.25 \ --set BackgroundRate values=1100 relsigma=0.25 \ -- dataset-v1 --name peak --theory-data peak_f.spectrum peak_MC.spectrum \ -- analysis-v1 --name analysis --datasets peak \ -- stats stats --chi2 analysis \ -- pargroup minpars peak_f -vv \ -- minimizer-v1 min stats minpars -vvCreate a minimizer and do a fit of a function ‘stats’ and a group of parameters ‘minpars’ using a iminuit minimizer:
./gna \ -- gaussianpeak --name peak_MC --nbins 50 \ -- gaussianpeak --name peak_f --nbins 50 \ -- ns --name peak_MC --print \ --set E0 values=2 fixed \ --set Width values=0.5 fixed \ --set Mu values=2000 fixed \ --set BackgroundRate values=1000 fixed \ -- ns --name peak_f --print \ --set E0 values=2.5 relsigma=0.2 \ --set Width values=0.3 relsigma=0.2 \ --set Mu values=1500 relsigma=0.25 \ --set BackgroundRate values=1100 relsigma=0.25 \ -- dataset-v1 --name peak --theory-data peak_f.spectrum peak_MC.spectrum \ -- analysis-v1 --name analysis --datasets peak \ -- stats stats --chi2 analysis \ -- pargroup minpars peak_f -vv \ -- minimizer-v1 min stats minpars -vv -t iminuit