Derivative transformation¶
Description¶
Calculates the derivative of the multidimensional function versus parameter. Uses finite differences method of 4-th order.
Arguments¶
x
— parameter instance.reldelta
— finite difference step \(h\).
Inputs¶
derivative.y
— array of size \(N\).
Outputs¶
derivative.dy
— array of size \(N\).
Implementation¶
The second order finite difference reads as follows:
\[D_2(h) = \frac{f(x+h) - f(x-h)}{2h}.\]
The fourth order reads as follows:
\[\begin{split}\frac{dy}{dx} = D_4(h)
&= \frac{1}{3} \left(4D_2\left(\frac{h}{2}\right) - D_2(h)\right)
= \\ &=
\frac{4}{3h} \left(f\left(x+\frac{h}{2}\right) - f\left(x-\frac{h}{2}\right)\right)
- \frac{1}{6h} \left(f\left(x+h\right) - f\left(x-h\right)\right).\end{split}\]
for more information see https://en.wikipedia.org/wiki/Finite_difference_coefficient.